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NEW HIGHER-ORDER BOUNDARY-LAYER EQUATIONS

FOR LAMINAR AND TURBULENT FLOW PAST AXISYMMETRIC BODIES

C. KLEINSTREUER*, A. EGHLIMA** AND J.E. FLAHERTY'
Rensselaer Polytechnic Institute

Troy, NY 12181

Abstract. New sets of boundary-layer equations accounting for flow field

non-uniformities such as curvature effects, normal stress and pressure variations

as well as separation, are derived. The boundary-layer flow domain is subdivided

into (1) a parabolic region where the fluid flow is approximately parallel to the

submerged body, i.e. v<<u and (2) an elliptic region which includes the line of

separation where significant interactions between the boundary-layer and the outer

potential flow occur, i.e. v = u. Closure for the turbulent flow equations has to be

obtained with submodels for the Reynolds stresses which reflect the effects of

boundary-layer thickening as well as separation. The accuracy of the parabolic

e.quations was compared with Van Dyke's higher-order boundary-layer equations for

laminar flow past a body with longitudinal curvature. The results demonstrate

that the new modeling equations make a measurable difference as expected from

observations made by Bradshaw and others.

1. Introduction. An accurate but also computationally efficient

description of internal or external, laminar and turbulent flow fields is

important for the optimal design of a variety of mechanical systems. For

example, simulation of the proposed boundary-layer equations can aid in

improving the design of bent diffusors and submerged bodies in terms of

reduced pressure loss and total drag reduction respectively. Furthermore,

propeller performance of marine crafts could be enhanced with a more

accurate prediction of the velocity field in the near-wake region.

At the high Reynolds numbers of interest, the analysis involves the

usual difficulties encountered with turbulent boundary layers in a pressure
Approved for public releaser -
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*Department of Chemical and Environmental Engineering.
**Department of Mechanical Engineering.
'Department of Mathematical Sciences. The work of this author was partially
sponsored by the U.S. Air Force Office of Scientific R s rch, Air Force Sys-
tems Command, USAF, under Grant NumbexAFOS .-Ol9I.,T u United States Go-
vernment is authorized to repace h UzkiisIU te reprints for government
purposes notwithstanding any pright notation thereon.



gradient now accentuated by the boundary layer thickness (relative to the

transverse and/or longitudinal body radius) and eventually the effects of

flow separation. Van Dyke (1962, 1969) has shown, that transverse curvature.

makes a contribution to differential and integral flow parameters that is

additive to that of longitudinal curvature and of the same relative order.

Meroney and Bradshaw (1975) have measured turbulent boundary layer growth

in a prolonged bend and show that a small (one percent) change in the curva-

ture of a convex surface produces a relatively large (ten percent) change

in the integral properties of the flow field, such as total drag. Further

measurements of curvature effects on laminar and turbulent boundary-layer

flow parameters were published by Huang et al. (1980), Gillis and Johnson

(1980), Smith et al.. (1979), Patel and Lee (1978), Ramaprian and Shivaprasd

(1978), and Patel (1974). Different investigators (e.g. Rastogi and Whitelaw

(1971), Bradshaw (1973, 1975), Patel and Lee (1978), Granville (1978),

Cebeci et al. (1978), Huang et al. (1979), Cebeci (1979), and Patel and

Choi (1980))have used or described different methods to solve thick bound-

ary.layer problems for special situations by taking into account some of

the non-uniformities, such as longitudinal curvature or transverse curvature

effects, but not all of them as discussed earlier. On the other hand we

will show in subsequent sections that the equation usually employed for

calculating the longitudinal curvature effect (Van Dyke C1969)) is not

complete. Our derivations (Sections 3 & 5) indicate that additional terms

of the same order of magnitude as Van Dyke's second order terms are necessary

for representing the influence of longitudinal curvature on the growth of

boundary layers. Authors (e.g. Cebeci (1971), Rastogi and Whitelaw (1971),

Cebeci et al. (1978, (1979)) who employed a turbulent version of Van Dyke's

equation could not predict the curvature effects on integral properties of



the flow field as measured by Meroney and Bradshaw (1975). Solutions of the
boundary layer equations employing prescribed variations of the pressure

gradient (Patel (1974)) failed near the point of flow separation and con-

sequently a singular behavior in the boundary layer solution was postulated

(Goldstein (1948)). However, Williams (1977) used the results of various

researchers (e.g. Keller and Takami (1966), Son and Hanratty (1969), Dennis

(1970), and Masliyah (1970)), who solved the Navier-Stokes equation for flows

that include the point of zero stress, to show that such a singular behavior

is not a physical property of the flow but it is a characteristic of the

solutions of the boundary layer equations.

We are presenting higher-order boundary-layer equations that simulate

incompressible laminar and turbulent flow fields more accurately than with

existing models.

2. System conceptualization and approach. Consider the steady two-

dimensional or axisynmnetric flow of a Newtonian fluid past a stationary body.

Figure 1 schematically depicts the various flow developments including the

three major regions of interest at the tail of the submerged body where the

boundary layer is thick due to curvature effects. In region I the mean flow

streamlines remain nearly parallel to the solid surface regardless of the

relative thickness of the boundary layer. In region II streamlines are not

parallel to the body surface and the velocity component u parallel to the

body surface is of the same order of magnitude as the velocity component v

normal to the body. The flow in this region is characterized by strong

interactions between the boundary layer and the outer inviscid flow in region

III. Basically two new sets of governing equations for thick turbulent
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boundary layer flows (regionl and II) are derived. Laminar flow fields with

any type of curvature effect can be regarded as a special case of the first

complete set of modeling equations.

The approach for simulating a general external or internal flow system is

best illustrated with reference to Fig. 1. Starting from the stagnation point,

a suitable computer code (e.g. Cebeci et al.(1978))is employed until the boundary

layer becomes thick, i.e. A << I is not valid any more. The intermediate results

are then relayed to the program of our new parabolic equations for region I which

are accurate as long as v << u which may include the point of separation. We

note that boundary layer thickening might occur for certain body geometries

at quite an early stage as demonstrated in Section 6 for.a laminar flow case

study. When reverse flow occurs and v = u, the new elliptic.modeling equa-

tions of region II are activated. Interaction with the potential flow

(Cebeci et al. C1978)) is simulated with the local displacement thickness

using an iterative procedure. In order to preserve computational efficiency,

a continuous function is assumed for the pressure drop from the calculated

pressure at the separation point to the wake pressure behind the afterbody

which is apparently of the order of magnitude of the outer flow pressure.

The near-wake velocity field is then actually computed with Schlichting's solu-

tion for (circular) wakes behind a three-dimensional body (e.g. White (1974),

Riley and Metcalfe (1980)). More detailed investigations for wake flow are dis-

cussed by Wu (1972), Pope and Whitelaw (1976) and recently by Smith (1979).

3. Derivation of the governing equations for region I. The governing

equations for the generalized class of thick boundary layer developments are

written in terms of fluid mass and momentum fluxes (cf. Kleinstreuer (1982)):



(3.1) + V-pv 0

(3.2) p v + V.pv v = - Vr + pf

where pv is the mass flux (i.e., fluid mass per unit area and per unit time),

pvv is the momentum flux and r- p6 + t is the total stress tensor consisting

of the thermodynamic pressure as well as shear plus normal stresses.

We restrict our analysis to the steady two-dimensional or axisyrmmetric

flow of a Newtonian fluid around a submerged body and introduce the tangential

and normal (s, n) orthogonal coordinate system shown in Fig. 2. Under these

conditions, the equations of continuity and momentum may be written as:

(3.3) (ur) + - (vrh) 0

u ;u 2u uvK 2u + { 2U + 2u 2 I
h as an h phas 1b s an2 rh

s s (hr an.~~~~ ~ ~~~ ;-- . + =-p 2v +s j,.2

uvav av Ku2  I + I v +a v+ 1
has on h p an h2 as2  an2  rh

(3.5) (r v+--h)
as h as af an

K 1

where the geometric parameters h = I + and K reflect longitudinal

curvature effects whereas r = ro + n cose accommodates the transverse curvature

(cf. Figure 2).
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The system of equations (3.3-3.5) can be simplified for distinct parts of the

flow domain employing the relative order of magnitude analysis.

In region I of Fig. 2, the normal component of the velocity vector v is

significantly smaller than the longitudinal component u. With this assumption,

we introduce dimensionless variables that are of the order of unity in the

boundary layer (cf. Van Dyke (1969)) as

= u/U , = Rem v/U

(3.6) s s/L , n=Rem n/L

Re =UL/-v , p=p/p U2

Non-dimensionalization of the governing equations is achieved by inserting

the dimensionless variables (3.6) into first the continuity equation (3.3).

ULa UFO +  Re-m cose)u] + UL Re- a R m
(3.7) L Re-m  n [( rO + n R cose)

*(l + n- Re'm )] = 0

as [(r. + n Re-m cose)u] + -L {[r(l + R Re-m) + n Re-m coso]v}

(3.8) + Re-2m a E0C 2 cose)] = 0

arn

This equation after restoring original variables and rearrangement will

reduce to

(3.9) (r j u) + .-. [ v(r j - ro3 (l-h 3 ))] + O(Re 2 m) - 03.)as a h)]+OR



Substituting (3.6) into equation (3.4) yields:

IU2  au@ U2  au 2  Re-m

1 + R+ Re-m + K "Re- =

_u_2  1 -P-+ V{U 1 2 +
L2  1 1L1+ Ri Re- m L 1+ Re- m a

(3.10) + Re2m B U aj 1

L 2  -+- S L(i0 +H Re-mcos6)(1+RnRe-m) --

+1 Lb ]+JLRe n u 1 c _(Il+ Re-m) 3 L 2-- [  (o0 R- oea

+ ah]( +kRe - m ) an

Using the relation

I+: l-E+O(E2 ) ; where E << ,

one can find for the previous equation

- l Re-m+ 0(Re-2m u Re nRe+O(Re- 2 m)]

- ~C1~n~r+ORem)+h + Re -' Re4 + Re m-
"h

(3.1nRe-m+ (Re-2m)] + 2 .Re-' [l2knRem+o(Re -2m) Re2m_ 1

LW* .u - Re- I  +(n O(Re-2m)
(3.11) T-s 0 -I ro ++

a - ' [1 3W Re-m+ O(Re-2m)] 2h

as"-u Re2m-I { 1 -M 2m]*o

- :- cos e Re-n + O(Re- 2m)] s Re- "an ro

+ i Rem l_ nRe - m + O(Re-2m))}



where
a- L[- ; + n Re- M  

]
a- as ag

.- -i a '(s)
as ag

After some rearrangements, the equation of motion in s-direction can be

written as

a--?au + L - + Re-m (-Knu u + Ri) -
- .fa (-H Re- m)

an a
(3.12)

+R) 2 m- 1 a2  em-I au Cos 0+ (Re)+ a 2 + + Re + O+ (Re-l,Re - m-1 ,Re-2m -...)

an ro

Restoring the original variables in equation (3.12) will yield

(3.13) (2-hJ) u + v-u K+v = - (2 -nh) -+v{.?Lu a+ 2 n[(rui + h3 ]
as an p as an 2  an an r.

Substituting (3.6) into equation (3.5) yields

U2  Re- u- U -R-at U2 a - _ U2 2u2
L U-+-LRem v.-~ L(1+k Re-m) as an (I+7n Re-m) pL Re- m  a

(3.14) Re-m MU a2V + U 1 2 7 + U R a _ € r

1+(l+k Re- m) L as2  L2  Re - m  an L- as

1 aI I (3 a
+L-  Rem a ai

Using again the relation 1 E z 1 - 0(c2 ) one obtains

Rem (l-KinRe - m) -  R a+ Re-' V-2 ~~(1asal
+M~ ;C Rem -

1 22

-Re+m = + Rem -  (I-2k Re-m) a! + Re-
(3.15) n

- + Re-m cos

rn-1 av a Re0 m
aRe-mRI+ .- 2m)]

" Rem-' av 1 ] (Cos 8 Re- m  f- cos 0 Re - m ) + K Re- m + o(Re-2)
an r o r



After rearrangements and simplifications, we have

-i 2m av ~ v+~j2
Ku' e ' (Re-+ -:+ -2

(3.16) 1 7 -m a os6-m -2m
2R + e-l+ ReRe-1-m av +cosR + + o(Re Re-in,...): -a a --  an ro

Restoring the original variables yields

(3.17) Ku 2  1 P + o(Re-1 , Re-2n, ...)

p an

Hence, for region I, (3.9, 3.13 and 3.17) are the basic equations where the

flow indices i and j indicate the cases i = j = 0 for flow past a flat plate and

i= 1, j =0 for axisymmetric bodies with no longitudinal curvature and i =0,

j=l for flow without transverse curvature. Finally, i=j=-.when longitudinal

and transverse curvature effect exist. The exponent m is kndwn for turbulent

thin boundary layer flow with zero pressure gradient along a flat plate (m =5

see Schlichting, 1979, p. 638). Thus, terms of the order of Re , Re 2m, etc.

are neglected.

Depending on the geometry of the submerged body it is possible that the
n

boundary-layer thickness 60 is not small (i.e. Z 0(1) ) but the mean flow

streamlines still remain nearly parallel to the surface so that the normal

component of the velocity v is still much smaller than the longitudinal

component u. In this case, dimensionless variables that are of the order of

unity in the boundary layer are introduced as:

Su - Rem v
U 'v U

(3.18) s n 11

ULL

Re UL, = _P2V pU2



Inserting the dimensionless variables into the system (3.3-3.5), and following

the same procedure that was used previously, one rhtains

a(9F) + Re-m  0as

(3.19) a + h Re-m  - u E+ O(Re

R t + 2 -O(Re2m, Re - -l)
Re-m -+ =u -- + )(R R

Restoring the original variables

(ur) + i- (vhr) = 0as a

(3.20) h ~ (&1u -L-+ h v 21+ u v 'P=-0Re-
as an u p as

u !- - K u2  1 2R + O(Re-2m Re-m-l)
as Pan

For the turbulent flow analysis, time-averaged variables are denoted by

overbars and random fluctuations by primes, so that

(3.21) u = u + u' , v = v + v' and p = p + p

where Reynolds stresses generated by the non-axisymmetric velocity fluctuations

w' are neglected.

In addition, the following rules of operation for time-averaged variables

are required for reference

f f f, f+g =f + -g,f and ffds = ffds

2g, f=g =fYg, 52 +-I

Hence, u + 2 and u.-v = u-v + ur-'



Equations (3.22 to 3.24) contain five unknowns, namely, u, v, p, u'v', (u-T).

In order to gain closure it is therefore necessary to furnish some additional

relationships.

Based on the objective of computational efficiency, and with the measured

data sets found in the open literature, we postulate an algebraic turbulence

or zero-equation model for the shear stresses reflecting curvature effects and

relate these expressions directly to the normal stresses. Among the algebraic

submodels, the mixing length hypothesis (MLH) has proven very useful and

realistic for a wide range of case studies, provided that good choices were

made for the mixing length distributions. However, the MLH cannot represent,

in general, recirculating flows, turbulence convection or diffusion and non-zero

effective viscosities or Prandtl numbers at the points of zero velocity gradients.

Two commonly employed transport equations for turbulent shear stresses are the

mixing length formula (Von Kdrm~n 0931))

21aulau
(3.27a) -u'v' = ay ay

and the eddy viscosity formula (Boussinesq 0877))

(3.27b) -u'v' = VtT

where vt = vt(km) again.

Following the method used for thin turbulent boundary layer calculations,

a composite layer consisting of two regions is postulated (e.g. Baker & Launder

0974), Kwon & Pletcher 0979)). The distributions of km and vt are then

described by two separate empirical expressions. The criterion to define

the inner and outer region of the boundary layer is the continuity of the

eddy viscosity or the mixing length at the hypothetical "interface". The



shear stresses are a function of mean-time velocity and velocity gradient as

well as mixing lengths which in trun are dependent upon the radii of

curvatures, viz:

(3.28) u'lv'i u'v' [vt(Zm,R,ro); u,V5]

The turbulent flow analysis as well as predicted vs. measured results can be

found in Eghlima (1982) and will be published in a forthcoming paper.

4. The governing equations for region II. In region II which possibly

includes the point of separation, we can no longer assume that-v << u. Hence,.

the flow in this region is characterized by strong interactioft between the

(detached) boundary layer and the outer potential flow. It is also conceiv-

able that the attached (parabolic) boundary layer regime may be influenced by

the (elliptic) reverse flow region after separation. Actual simulation results

of thick separating boundary layer flows, viscid-inviscid interactions and

near-wake effects will be discussed in a future series of papers. In this

section we summarize the governing equations for region II.

After the appropriate correction in equation (3.6), since now v u,

and substitution into the system of equations (3.3 to 3.5) we obtain

s (r  u) + a v(r-r(l-hl))] + O(Re -2m) =0

(u + v au + u vK - l + a-u+ O(Re-2m)(4.2) Pa anas --n
(4.3) u 2- + v L - Ku2  I + O - 2m )

aanp an Znz "



We note that transverse curvature effects only appear in the continuity

equation (4.1); whereas the approximated s- and n-momentum equations (4.2

and 4.3) only explicitly contain the longitudinal curvature parameter in

one term. However, in contrast to the first-order boundary layer equations,

the Navier-Stokes equation in n-direction is almost fully preserved since

v z u. In addition, transverse curvature effects have to be coupled with

the Reynolds stresses.

Again splitting the instantaneous variables into time-smoothed and

random components we can derive the steady turbulent flow equations for

region II as

•;(4 .4 ) r- -- "

- - ~ 1 M~!ro +

n p as 2 ;2
i (4.5)

22
S+ sin 6(u' 2) + _- (u+-, 2L) + a (u--v,))

v .v _2 _ _ +_ a= 1 {_ uv o

u--. v - K u p -n ro )

(4.6)

M+ ro a 12+ ( -o-- (v,) + (Cos G) (v') + K ol(' - (U,7)]1

where M = rj - ro(l-hi) and K = (1)1/i

0 R

The associated boundary conditions and the meaning of i and j are given

in Section 3.



5. Case study for laminar boundary-layer flow with longitudinal

curvature effect. To demonstrate the technical merit of the new governing

equations, a spinoff from equation (3.4), the special case of laminar boundary

layer flow with longitudinal curvature effects is analyzed. Van Dyke (1962),

0_969) developed a higher-order boundary layer equation which takes into

account the effect of longitudinal curvature as

(5.1) u u+ v -+ Ku v 2 + vhj u + K 2as an P as an' an

In contrast, our s-momentum equation which can be directly obtained from (3.13) for r0
reads- u au + hv L- + Ku v + [(l -hi) u -u + (l-h j ) v au-

asan asJ an~j(5.2)2
p + v hj 2 u + v K u+ [-(l-hj ) . + v(l ) 4 .

p as an2  an P .+ . an

Hence, the proposed modeling equation (5.2) carries four additional terms

which are of the same (second) order of magnitude when compared with equation

(5.1). For h=l, which includes K=O, both equations reduce to Prandtl's

boundary layer equation.

Before both equations are numerically compared it is of interest to trace

the derivation procedures leading to the noted discrepancy. The traditional

departure point for obtaining a higher-order approximation of laminar incom-

pressible flow along a curved surface is either the system of equations (7)

on page 119 in Goldstein (1948) or equations (22 and 23) on page 202 in

Rosenhead (1963). The two sets of equations are mathematically equivalent

but physical significance is lost when Goldstein's equation is multiplied by

H (original notation) to generate Rosenhead's equation. Indeed, Rosenhead's



equation can be obtained in multiplying equation (3.4) by h I + and then

neglecting terms of the order of (.E)Z and higher. During this procedureR

cert..n terms of the order of (!!) could not be retained. This is best

illustrated by considering an equation of the functional form

(5.3a) A + B c + 0(F 2 ) + 0

where h- l + e + 0(c2 ) and - n
R"

Equation(5.3a) is representativefor Goldstein's equation whereas Rosenhead's

equation would take on the form

(5.4a) A + Bhe + 0(E 2 ) + . 0

or

(5.4b) A + Be + O(c2) + ... 0.

This last procedure, leading to Van Dyke's equation (5.1), indicates a short-

coming when compared with equation (5.3) now rewritten with h- 1 = (l+e) - l

1-C + 0(2)

(5.3b) (1-e) A + Be + 0(E2) + ... 0.

In equation (5.3b) which is representative of our equation (5.2), the term,

-e A, is preserved in the derivation procedure.

In Section 6, numerical results from a case study document the differ-

ences between equations (5.2) and (5.1).

6. Preparation of governing equations and numerical comparison. In

order to simplify the comparison of numerical case studies, equations (3.23)

and (3.24) are rewritten in a general form.

(6.1) A u-- + A2 v -u+ A uv A4  + vA5 A (A ' --u+7 

1 ... . .3n i 3I 4I . ... n -. 7 3



I

(6.2) A3 u2  8 + Ag u

Now, Van Dyke's equation (5.1) is obtained by setting

A1 = l A2 = h
j , A3 = K, A4  I , A5 = hi , A6 =1 and A7 = K.

Our s-momentum equation (5.2) requires

A =2-hi , A2 
= l , A3 

= K , A4 
= -(2-h)/p , A5 =A 6 

= 1 and A7 = K.

A finite difference method developed by H.B. Keller and described by

Cebeci and Smith (1974) was selected after improvements were implemented as the

best candidate for our modeling equations (Eghlima0982))-. In order to prepare

the governing equations, submodels and boundary conditions for the numerical

solution procedure, the following steps have to be accomplished: (1) trans-

formation of the modeling equations into a new coordinate system (modified

Mangler-Levy-Lee transformation), (2) transformation of the momentum equations

and associated boundary conditions into a system of first-order partial differ-

ential equation, and (3) discretization of the modeling equations into finite

difference forms using centered-differenced quotients. Some salient aspects of

the first two steps are given below.

In order to remove the large variations of the boundary layer thickness

and to obtain the governing equations (3.22 to 3.24) in simple form, an appro-

priate coordinate transformation is implemented.

(6.3a) d C = pe p t ue ds

where, in general, the turbulence viscosity pt = Pe(l + Em) and Em = Cm(R,n);

(6.3b) dn = e ue/ 2 ](i dn
e e Lr



In using the continuity equation (3.22), the stream function p can be

defined as

(6.4a,b) u and v
ripe 3n MPe 3s

A dimensionless stream function f( ,i) is related to ip(s,n) as:

(6.5) i(s,n) = / Lri f (ET)

Now the partial-derivative operators -L and can be calculated.ain 3n s

For exdmple:

.(6.6a) u = uef' , where f',= af
ea-

(6.6b) v = - Pe ue F2:Lri/M [ +C + n f']

Substituting the transformed variables and their derivatives into equations

(3.23 and 3.24) - equation (3.22) is automatically satisfied - the momentum

equations in the(C, ri)- coordinate system read:

[QI f'']' + Q2 f'f" + Q3(f')2 + Q4 ff" + Q5 ff' + Q6f =

(6.7) an + f 9 a+fQ(  )q + (T-n ) ] + Q8 f' 1- + Q9 f" + Q10 f ' af

(6.8) Qll f + Q12(f . 2 Ql3( an )E

where the Q's are functions of geometric, fluid, and flow parameters. In

substituting ( a ) from equation (6.8) into (6.7), a single equation results.

To solve this third order, nonlinear partial differential equation with

Keller's Box Method, new dependent variables U(&,q) and V(&,n) are introduced

and a coupled system of first-order PDE's 'is generated:



(6.9a) f U = U/ue

(6.9b) U' = V

[Q1 V1' + Q2 UV + Q14(U)2 + Q4 f V + Q5 fU + Q15 V =(69c) f
Q7c( ) + Q8 U V + Q9 V 2+ Q1OU --

The system (6.9) constitutes the new set of higher-order boundary layer equations

for laminar and turbulent flows in region I.

The associated boundary conditions, formerly given as (3.25), can be written as:

(6.10a) f'(E,O), i.e. U( ,O) 0 and *f(EO) 0.

In addition,

(6.10b) f n , ' + +

where

cos e r-u - I]D( ,rq) = K ros [(I + ?L o /2

For the case of flow past a flat plate, D( ,n) = 0 or f' = 1. The edge

boundary condition may be sensitive to the specification of r.. To reduce

this sensitivity, the expression (6.10b) is differentiated so that with

(6.10c) q ni , f, = _ D1 (E,n)
[I + D(C,)]

2

where
D,(Ei) = K 2Lr 2 I 2Lr cos 8 Y -1/2

PeUero ro 2 Peue

In combining (6.10b and c), the. outer boundary-layer condition reads

(6.10d) n- n., , fie + D1 ( ,nI) f,2 = 0

or V + DiU 2 = 0.



The coefficients of (6.9c) are defined as

Q12 an Qll anQ14 = Q3 - Q7 -3 ' Q15 = Q6 -Q7 Q-3

6 (  ' 2 -  ) n [Q8 + Q91

Q8 3U e Q n (Lr )I

Q3 ue - Q4 - M

Qi A Q 7 M-

5 PeUe r 4 6 A e 'e

A4  Q8  A1  Lr
Q7 -A1  u' Q8 A r (F

e8 5

Q9  -2 Q4  Q10  - 2r Q5

ri

Q11  A9 Pe -r Q12 -3

Pe r i1 ar- h 1 am
QI3  e - 8and A7 -G(s,n) r i n + *m( 1 'anire + l+ K).

For the simulation of (5.1) and (5.2), G(s,n) = K wherer o -- and em = 0, and

the appropriate parameters A1 to A9 have to be inserted.

The boundary conditions for (5.1) and (5.2) are

U(,n= 0) = 0 = f(, 0 : 0) and U(&,n-n )-' .

Following the procedure for implementing Keller's Box IMethod as outlined in

Cebeci and Smith (1974), equations (6.9a-c) are progra-med and then solved

with an efficient, generalized equation solver developed by Varah (1976) and

implemented by Flaherty and Mathon (1980). The pressure gradient is obtained

from the solution of the inviscid flow regime (region III) for which the

code developed by Cebeci et al. (1978) was employed.



To demonstrate the effect of longitudinal curvature and to show the numerical

differences between equations (5.1) and (5.2), we selected an axisymmetric

body designed and documented by Huang et al. (1979). Figure 3 depicts schem-

atically one-half of the symmetric body which in our case is semi-infinite

since ro - . Of much higher resolution and physical interest is Fig. 4. It

shows the local A =K6 vs. the chord length of the submerged body. The curve

peaks early due to a sharp decrease of the radius of longitudinal curvature and

then falls to zero (despite the growing boundary layer) when R . When the

flat middle section is over, A increases again since R becomes finite and 6

is quite thick (z 0.4 ft) by then. The threshold value for () 0.003

was suggested by Cebeci and Smith (1974) based on Bradshaw's measurements which,

however, were made for turbulent flows. For values > ( A)_curvature
R R 0.

effects become significant.

Figure 5 demonstrates that our "additional second-order terms" have indeed a

significant effect, actually 10% at one point in this case study. It is

evident that the maximal difference occurs after K (x) has peaked. There are

two reasons for this shift. Most influential is the term containing the pressure

gradient which is retained in our derivation. In addition, there is an "after-

effect" of the peak on the velocity distribution (enhanced by our four additional

terms) which becomes fully visible a small distance downstream. The influential

pressure gradient is about equal to zero at the maximum point for (CFA-CFV)/CFF

which explains the sudden drop of the curve somewhat in correspondence with A (x).
Towards the tail of the body A becomes significant again and, indeed,

R

(CFA-CFV)/CFF 1 0.
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Fig. 3. Semi-infinite body with longitudinal curvature (adapted from Huang et al. 1980).

CD

DEL local-boundary layer thickness
-O

X6 R local radius of longitudinal curvature

.LU
C-D

'b.O0 2.00 4.00 6.00 8.00 10.00 12.00

X (FEET)
Fig. 4. Local - = KS vs. chord length of submerged body.

CFA local friction coefficient (this paper)

LJ_ CFV local friction coefficient (Van Dyke 1969)

NCFF ' local friction coefficient (flat plate)

u
IL

C

cIx

0.00 2.00 4.00 6.00 8.00 10.00 12.00

X (FEET)
Fig. 5. Effects of thick laminar boundary layer development on the local friction

coefficient: A comparison between equations (5.1) and (5.2) at Re z 0(103).



In contrast to Fig. 5 where modeling improvements for points along the solid

surface are shown, i.e. (x), Figs. 6a-c depict the differences in boundary
Y wall

layer velocity profiles as produced by (5.1) and (5.2). Again, the higher

accuracy of our equation is quite evident and has a significant effect on the

local fluid flow parameters, especially near and at the wall,as well as on the

point of separation. Figure 7 shows the development of the pressure gradient

as discussed earlier.

7. Conclusions and future work. Based on a mathematically rigorous

analysis, new sets of higher-order boundary layer equations for axisymmetric

laminar and turbulent flow fields were derived. For the case-of thick laminar

boundary layer flow with longitudinal curvature effects, Van Oyke's momentum

equation was numerically compared with our new equation which carries four addi-

tional (second-order) terms. The difference between the two equations in terms

of local as well as integral properties of the flow system is significant. It

is anticipated that the existing discrepancy between predicted and measured

data for thick turbulent flows can now be closed with the use of the new

higher-order boundary layer equations. Hence, several case studies will be

conducted which will include the simulation of laminar and turbulent boundary

layer developments along longitudinally and transversely curved surfaces and

comparison with measured data sets published by So and Mellor (1973), Simpson

et al. (1974) and Huang et al. (1979, 1980).

The turbulent flow data collected by Simpson et al. (1974) include separation.

It is obvious that separating flows are very difficult to investigate. Strong

interactions between the potential flow and thick turbulent boundary layer

have to be accounted for. In addition, separation and near-wake effects might
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Fig. 6a: Comparison of laminar velocity profiles from (5.1) and (5.2) at
the nose of the submerqed body, i.e. before the peak of K*DEL
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Fig. 6b: Comparison of laminar velocity profiles from (5.1) and (5.2)
at the nose of the submerged body, i.e. after the peak of K*DEL(Acf
and at kCffo) in Fig. 5.
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influence the upstream region of the still attached boundary layer. However,

we will test the performance of our parabolic equations of region I also for

regions containing mild recirculation so that the complex simulation of (4.4

to 4.6) can be avoided whenever possible.

In any case, only simple submodels for the Reynolds stresses will be employed

in order to demonstrate also for turbulent flow the physical significance of

our new equations. Previously, empirical turbulence models for specific case

studies were used in conjunction with incomplete momentum equations to match

laboratory observations.

To reduce the cumbersome and error-prone work of system discretization, the

mesh generator developed by Kleinstreuer (1980) and advancemethts proposed by

Dwyer et al. (1980) will be implemented for future case studies.
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NOMENCLATURE

A to A9  parameters in equations(6.1 & 6.2)

f dimensionless stream function defined by Eq. (6.5)

hI h= 1+ Kn metric coefficient (dimensionless)

h2 = 1 metric coefficient (dimensionless)

h3 = r metric coefficient (dimensionless)

K 1 longitudinal curvature (ft)-
R

Lr reference length (ft)

Rm mixing length (ft)

M = (r)i - (ro)i [1- (h)j] (ft)

n coordinate, normal to body (ft)

P pressure

pnon-dimensional pressure

Q to Q parametersin equation (6.9c)

R radius of longitudinal curvature (ft)

r=r o +n cose transverse radius of curvature (ft)

ro  transverse radius of curvature of the body (ft)
s coordinate along the body surface (ft)

non-dimensional coordinate along the body surface

t time

u s component of the velocity (ft/sec)

u dimensionless velocity in s direction

u time-averaged velocity in s direction (ft/sec)

up velocity fluctuation in s direction (ft/sec)

u12 Reynolds normal stress in s direction



U f  dimensionless variable

Uinf free stream velocity

v n component of the velocity (ft/sec)

dimensionless velocity in n direction

time-averaged velocity in n direction (ft/sec)

v' velocity fluctuation in n direction (ft/sec)

V,2 Reynolds normal stress in n direction

V = aU non-dimensional variablean

w velocity normal to (s-n) plane (ft/sec)

W'2  Reynolds normal stress normal to (s-n) plane

u'v' Reynolds shear stress

Greek Symbols

longitudinal curvature effect parameter

angle between axis of symmetry and tangent to the
surface (radiant)

v kinematic viscosity

At  eddy viscosity

V dynamic viscosity (Ibm/ft-sec)

p mass density (lbm/ft3 )

transformed s-coordinate (Ibm/ft-sec)



nI transformed n-coordinate (non-dimensional)

boundary-layer thickness (ft)
E- t non-dimensional eddy viscosity

Superscripts

i transverse curvature index
=1 does exist
=0 does not exist

longitudinal curvature index
=1 does exist
=0 does not exist

Subscripts

e outer edge of boundary layer

eff effective value

f flat plate

t turbulent

w wall
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